fpga_feixiang 发表于 2020-12-30 13:58:04

指数形式的傅里叶变换

光波

高中时我们就学过,自然光是由不同颜色的光叠加而成的,而最著名的实验就是牛顿师傅的三棱镜实验:https://img-blog.csdnimg.cn/img_convert/574102990c1e8753e18241e42ddd3296.png


所以其实我们在很早就接触到了光的频谱,只是并没有了解频谱更重要的意义。

但不同的是,傅里叶变换出来的频谱不仅仅是可见光这样频率范围有限的叠加,而是频率从 0 到无穷所有频率的组合。

这里,我们可以用两种方法来理解正弦波:

第一种前面已经讲过了,就是螺旋线在实轴的投影。

另一种需要借助欧拉公式的另一种形式去理解:

e^{it}=cos (t) +i.sin (t)
e^{-it}=cos (t)-i.sin (t)

将以上两式相加再除2,得到:



这个式子可以怎么理解呢?

我们刚才讲过,e^(it)可以理解为一条逆时针旋转的螺旋线,那么e^(-it)则可以理解为一条顺时针旋转的螺旋线。而 cos (t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!

举个例子的话,就是极化方向不同的两束光波,磁场抵消,电场加倍。

这里,逆时针旋转的我们称为正频率,而顺时针旋转的我们称为负频率(注意不是复频率)。

好了,刚才我们已经看到了大海——连续的傅里叶变换频谱,现在想一想,连续的螺旋线会是什么样子:

想象一下再往下翻:https://img-blog.csdnimg.cn/img_convert/dd63eed48e5ca16ce41e38904e702796.png

zhangyukun 发表于 2020-12-31 09:23:15

指数形式的傅里叶变换

大鹏 发表于 2021-1-4 09:42:59

指数形式的傅里叶变换
页: [1]
查看完整版本: 指数形式的傅里叶变换