二进制运算法则
二进制的运算算术运算二进制的加法:0+0=0,0+1=1 ,1+0=1, 1+1=10(向高位进位);二进制的减法:0-0=0,10-1=1(向高位借位) 1-0=1,1-1=0 (模二加运算或异或运算) ;
二进制的乘法:0 * 0 = 0 0 * 1 = 0,1 * 0 = 0,1 * 1 = 1 二进制的除法:0÷0 = 0,0÷1 = 0,1÷0 = 0 (无意义),1÷1 = 1 ;
逻辑运算二进制的或运算:遇1得1 二进制的与运算:遇0得0 二进制的非运算:各位取反。
首先我们得了解一个概念,叫“权”。“权”就是进制的基底的n次幂。如二进制的权就是(2)^n了,十进制的权就是(10)^n,看到十进制我们就很自然的想到科学计算法中的(10)^n,对吧?有了权这个定义之后,我们就可以随便把一个进制的数转化成另一个进制的数了。日常生活中,由于电脑的字节,汉字西文的字节的原因,二进制最常见的转换是八进制,十六进制,三十二进制,当然还有十进制。
二进制转换为其他进制:
(1)二进制转换成十进制:基数乘以权,然后相加,简化运算时可以把数位数是0的项不写出来,(因为0乘以其他不为0的数都是0)。小数部分也一样,但精确度较少。
(2)二进制转换为八进制:采用“三位一并法”(是以小数点为中心向左右两边以每三位分组,不足的补上0)这样就可以轻松的进行转换。例:将二进制数(11100101.11101011)2转换成八进制数。 (11100101.11101011)2=(345.726)8
(3)二进制转换为十六进制:采用的是“四位一并法”,整数部分从低位开始,每四位二进制数为一组,最后不足四位的,则在高位加0补足四位为止,也可以不补0;小数部分从高位开始,每四位二进制数为一组,最后不足四位的,必须在低位加0补足四位,然后用对应的十六进制数来代替,再按顺序写出对应的十六进制数。例:将二进制数(10011111011.11101100)2转换成十六进制数。(10011111011.11101100)2=(4FB.EC)16
其他进制转换为二进制:
(1)十进制转换为二进制
整数转换:采用连续除基取余(短除法),逆序排列法,直至商为0。
小数转换:采用连续乘基(即2)取整,顺序排列法。例(0.8125)10=(0.1101)2。步骤:0.8125*2=1.625,0.625*2=1.25,0.25*2=0.5,0.5*2-=1.0,则正向取整得(0.1101)2。
(2)八进制转换为二进制:把每一位八进制数对应转换为一个三位二进制数。例(745.361)8= (111100101.011110001)2
(3)十六进制转换为二进制:把每一位十六进制数对应转换为一个四位二进制数。 二进制运算法则 二进制运算法则 二进制运算法则 二进制运算法则
页:
[1]