一、实现步骤:
1.查看了中值滤波实现相关的网站和paper;
2.按照某篇paper的设计思想进行编程实现;
3.对各个模块进行语法检查、波形仿真、时序设计、调试验证;
4.与matlab的中值滤波结果进行比较。
二、实现过程:
1.查看了中值滤波实现相关的网站和paper;
在网上看了很多中值滤波的设计,也有一些代码可以下载,也有一片讲解的,只是感觉讲解的比较模糊而且不完整,最后看了几篇硕士论文,论文竟然主要做了中值滤波的工作,发现了一些设计思路,然后就按照自己的想法进行设计。
2.按照某篇paper的设计思想进行编程实现;
整个中值滤波模块分为几个小的模块:3*3窗口生成模块、计数器控制模块、3*3中值滤波模块、顶层模块以及最后的测试模块testbench的编写。
整个框架的设计如下图所示(使用visio画的框架图):
各个模块的设计:
1)ROM IP核的生成,用于存储原始灰度图像的数据。
使用matlab生成.coe图像数据文件,然后使用Xilinx ISE工具将.coe文件添加到ROM核进行数据初始化,按步骤得到ROM模块,参考生成的.v文件在顶层模块直接调用即可。
rom_512by512 rom_512by512_inst
(
.clka(CLK), //input clka;
.addra(rom_addr), //input-from
.douta(rom_data) //output-to
);
注意ROM的存储空间的大小;
2)3*3窗口生成模块,用于生成滤波的滑动窗口,得到窗口内的所有元素数据。
功能:
(1)根据中心像素点得到所在其所在的行、列位置;
(2)根据该模块的开始信号设计得到获取数据的有效时间序列;
(3)在读取数据的有效时序内,得到窗口内的所有元素数据;
(4)窗口数据的获取按照一定的时序顺序来获得,类似于黑金推荐的“仿顺序操作”,这个比较适合my style;不过后来发现调试的过程中被项目组的硬件人员改动了一些,甚至说不好,感觉可能是本人还没有理解掌握吃透“仿顺序操作”的精髓吧。
(5)根据中心像素点的行、列位置信息得到每个窗口元素的ROM地址,根据某一时刻ROM地址,下一时刻调用ROM模块得到对应的元素数据,下一时刻将数据锁存,然后再读取该地址的数据;所以要注意地址和数据的获取不是在同一时刻,而是需要延迟两个时刻;
(6)还需要注意的是图像的边界问题的特殊化处理;一般图像处理都会遇到边界问题,这个需要谨慎;
(7)对matlab的中值滤波函数medfilt2原理的深入掌握对我们编写这一模块非常重要。matlab并没有主要过程的代码,看注释默认情况下边界元素设置为0,这也可以通过结果反推回去发现的。
1 `timescale 1ns / 1ps
2 //////////////////////////////////////////////////////////////////////////////////
3 // Company:
4 // Engineer:
5 //
6 // Create Date:
7 // Design Name:
8 // Module Name: win3by3_gen
9 // Project Name:
10 // Target Devices:
11 // Tool versions:
12 // Description:
13 //
14 // Dependencies:
15 //
16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
20 //////////////////////////////////////////////////////////////////////////////////
21 module win3by3_gen(
22 CLK,
23 RSTn,
24 center_pix_sig,
25 cols, // the column numbers of the input image
26 rows,
27 rom_data_win, //input-from U1;
28 column_addr_sig, //input-from U3; //output [9 : 0] addra;
29 row_addr_sig, //input-from U3; //output [9 : 0] addra;
30 rom_addr_sig, //output-to U1;
31 data_out0, //output-to U4;
32 data_out1,
33 data_out2,
34 data_out3,
35 data_out4,
36 data_out5,
37 data_out6,
38 data_out7,
39 data_out8,
40 win_data_done_sig //output-to U4/U3;complete the win data;
41 );
42
43 input CLK;
44 input RSTn;
45 input [7:0] rom_data_win;
46 input [9:0] cols;
47 input [9:0] rows;
48 input center_pix_sig; //
49 input [9:0] column_addr_sig;
50 input [9:0] row_addr_sig;
51
52 output [7:0] data_out0; //output-to U4;
53 output [7:0] data_out1;
54 output [7:0] data_out2;
55 output [7:0] data_out3;
56 output [7:0] data_out4;
57 output [7:0] data_out5;
58 output [7:0] data_out6;
59 output [7:0] data_out7;
60 output [7:0] data_out8;
61 output [17:0] rom_addr_sig;
62 output win_data_done_sig;
63
64 /******************************************************************************************************************************/
65
66 reg [9:0] m;
67
68 always @ ( posedge CLK or negedge RSTn )
69 if ( !RSTn )
70 m <= 10'd1;
71 else if ( center_pix_sig )
72 m <= row_addr_sig[9:0];
73
74 /******************************************************************************************************************************/
75
76 reg [9:0] n;
77
78 always @ ( posedge CLK or negedge RSTn )
79 if ( !RSTn )
80 n <= 10'd1;
81 else if ( center_pix_sig )
82 n <= column_addr_sig[9:0];
83
84 /*****************************************************************************************************************************/
85
86 reg [3:0] i;
87 reg isWinDone;
88 reg [17:0] rom_addr;
89 reg [7:0] a11;
90 reg [7:0] a12;
91 reg [7:0] a13;
92 reg [7:0] a21;
93 reg [7:0] a22;
94 reg [7:0] a23;
95 reg [7:0] a31;
96 reg [7:0] a32;
97 reg [7:0] a33;
98
99 /*****************************************************************************************************************************/
100
101 reg get_9point_vld;
102
103 always @ ( posedge CLK or negedge RSTn )
104 if (!RSTn)
105 get_9point_vld <= 1'b0;
106 else if ( center_pix_sig )
107 get_9point_vld <= 1'b1;
108 else if ( i==4'd10 )
109 get_9point_vld <= 1'b0;
110
111
112 always @ ( posedge CLK or negedge RSTn )
113 if ( !RSTn )
114 isWinDone <= 1'b0;
115 else if ( i==4'd10 )
116 isWinDone <= 1'b1;
117 else
118 isWinDone <= 1'b0;
119
120
121
122 always @ ( posedge CLK or negedge RSTn )
123 if ( !RSTn )
124 i <= 4'd0;
125 else if (i == 4'd10)
126 i <= 4'd0;
127 else if ( get_9point_vld )
128 i <= i + 1'b1;
129
130
131
132
133 always @ ( posedge CLK or negedge RSTn )
134 if (!RSTn)
135 rom_addr <= 0;
136 else if ( get_9point_vld)
137 case (i)
138 4'd0:
139 if(!(m==1 || n==1)) rom_addr <= (m-2)*cols + (n-1) -1;
140
141 4'd1:
142 if(!(m==1 )) rom_addr <= (m-2)*cols + n -1;
143
144 4'd2:
145 if(!(m==1 || n==cols)) rom_addr <= (m-2)*cols + (n+1) -1;
146
147 4'd3:
148 if(!(n==1)) rom_addr <= (m-1)*cols + (n-1) -1;
149
150 4'd4:
151 rom_addr <= (m-1)*cols + n -1;
152
153 4'd5:
154 if(!(n==cols)) rom_addr <= (m-1)*cols + (n+1) -1;
155
156 4'd6:
157 if(!(m==cols || n==1)) rom_addr <= m*cols + (n-1) -1;
158
159 4'd7:
160 if(!(m==cols)) rom_addr <= m*cols + n -1;
161
162 4'd8:
163 if(!(m==cols || n==cols)) rom_addr <= m*cols + (n+1) -1;
164
165 default:;
166
167 endcase
168
169 always @ ( posedge CLK or negedge RSTn )
170 if (!RSTn)
171 begin
172 a11 <= 0;
173 a12 <= 0;
174 a13 <= 0;
175 a21 <= 0;
176 a22 <= 0;
177 a23 <= 0;
178 a31 <= 0;
179 a32 <= 0;
180 a33 <= 0;
181 end
182 else if ( get_9point_vld )
183
184 case (i)
185
186 4'd2:
187 if ( m==1 || n==1 )
188 a11 <= 0;
189 else
190 a11 <= rom_data_win;
191
192 4'd3:
193 if ( m==1 ) a12 <= 0;
194 else a12 <= rom_data_win;
195
196 4'd4:
197 if ( m==1 || n==cols ) a13 <= 0;
198 else a13 <= rom_data_win;
199
200 4'd5:
201 if ( n==1 ) a21 <= 0;
202 else a21 <= rom_data_win;
203
204 4'd6:
205 a22 <= rom_data_win;
206
207 4'd7:
208 if ( n==cols ) a23 <= 0;
209 else a23 <= rom_data_win;
210
211 4'd8:
212 if ( m==cols || n==1 ) a31 <= 0;
213 else a31 <= rom_data_win;
214
215 4'd9:
216 if ( m==cols ) a32 <= 0;
217 else a32 <= rom_data_win;
218
219 4'd10:
220 if ( m==cols || n==cols ) a33 <= 0;
221 else a33 <= rom_data_win;
222
223 default:;
224
225 endcase
226
227 /**********************************************************************************************/
228
229 assign win_data_done_sig = isWinDone;
230 assign rom_addr_sig = rom_addr;
231
232 assign data_out0 = a11;
233 assign data_out1 = a12;
234 assign data_out2 = a13;
235 assign data_out3 = a21;
236 assign data_out4 = a22;
237 assign data_out5 = a23;
238 assign data_out6 = a31;
239 assign data_out7 = a32;
240 assign data_out8 = a33;
241
242 /**********************************************************************************************/
243
244 endmodule
3)计数器控制模块,主要用于获得中心像素点的地址信息。
(1)系统模块开始信号之后开始获取第一个中心像素点,注意初始化信号值和系统开始的信号值的区别;
(2)该时刻得到的的数据将在下一个时刻产生结果,该时刻的数据并没有改变;
(3)注意中心像素点的行、列位置信息的计算;
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date:
// Design Name:
// Module Name: counter_ctrl
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module counter_ctrl(
CLK,
RSTn,
start_sig, //input-from top
nxt_pix_sig, //input-from --start next center point pixel
cols,
column_addr_sig, //output
row_addr_sig, //output-to
pix_done_sig //output-to
);
input CLK;
input RSTn;
input start_sig;
input nxt_pix_sig;
input [9:0] cols;
output pix_done_sig;
output [9:0] column_addr_sig;
output [9:0] row_addr_sig;
/***********************************************************************************************/
reg isCtrlDone;
//reg isWinStart;
reg [17:0] imk; //The k-th pixel of the image
reg [9:0] row_addr; // The row of the centeral pixel
reg [9:0] column_addr; // The column of the centeral pixel
reg start_sig_d;
wire start_sig_rising_vld;
always @ (posedge CLK or negedge RSTn) //Asynchronous reset
if (!RSTn)
start_sig_d <= 0;
else
start_sig_d <= start_sig;
assign start_sig_rising_vld = start_sig & (~start_sig_d);
always @ (posedge CLK or negedge RSTn) //Asynchronous reset
if (!RSTn)
begin
imk <= 18'b0;
column_addr <= 10'b0;
row_addr <= 10'b0;
isCtrlDone <= 1'b0;
end
else if (start_sig_rising_vld)
begin
imk <= 18'b1;
column_addr <= 10'b1;
row_addr <= 10'b1;
isCtrlDone <= 1'b1;
end
else if ( nxt_pix_sig )
begin
imk <= imk + 1'b1;
row_addr <= imk / cols + 1;
column_addr <= imk % cols + 1;
isCtrlDone <= 1'b1;
end
else isCtrlDone <= 1'b0;
/*****************************************************************************************/
assign row_addr_sig = row_addr;
assign column_addr_sig = column_addr;
assign pix_done_sig = isCtrlDone;
/*****************************************************************************************/
endmodule
4) 3*3中值滤波模块
功能:得到某一中心像素点的3*3滑窗区域的灰度值的中值,作为中心像素点的值;
中值滤波原理,网上有很多,大家可以查看一下。
本项目采用的是快速中值滤波的方法。
(1)若是3*3窗口生成模块完成之后就计算下一个中心像素点,需要将该中心像素点的窗口元素锁存起来,以防计算过程中将这些元素掩盖,不能正确进行中值滤波的计算;
always @ ( posedge CLK or negedge RSTn )
if (!RSTn)
begin
a11 <= 0;
a12 <= 0;
a13 <= 0;
a21 <= 0;
a22 <= 0;
a23 <= 0;
a31 <= 0;
a32 <= 0;
a33 <= 0;
end
else if (win_data_sig)
begin
a11 <= data_in0;
a12 <= data_in1;
a13 <= data_in2;
a21 <= data_in3;
a22 <= data_in4;
a23 <= data_in5;
a31 <= data_in6;
a32 <= data_in7;
a33 <= data_in8;
end
(2)需要在时序的有效区域内进行计算,怎么设计信号的有效性;
always @ ( posedge CLK or negedge RSTn )
if (!RSTn)
cal_vld <= 1'b0;
else if( win_data_sig )
cal_vld <= 1'b1;
else if( i==3'd3 )
cal_vld <= 0;
(3)仿顺序操作可以分开进行;每一个时刻只进行一个操作,这样可能更明了(代码中没有这样做);
always @ ( posedge CLK or negedge RSTn )
if (!RSTn)
i <= 3'd0;
else if( cal_vld & ( i!=3 ) )
i <= i + 1;
else
i <= 0;
(4)verilog编程调用函数的方法,指出输入信号,函数内可以使用其他定义声明的信号,最后的输出信号作为调用函数的结果(突然想起来,如果输出信号有多个元素呢,又该怎么办呢?大家可以想想);
function [7:0] max;//if the data is signed number, please add the char signed behind key function;
input [7:0] a, b, c;
begin
max = (((a >= b) ? a : b) >= c ) ? ((a >= b) ? a : b) : c;
end
endfunction
该模块的代码:
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date:
// Design Name:
// Module Name: medfilter3by3
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module medfilter3by3(
CLK,
RSTn,
win_data_sig, //input-from module of win3by3_gen;
medfilt_done_sig, //output-to top;
data_in0, //input-from module of win3by3_gen;
data_in1,
data_in2,
data_in3,
data_in4,
data_in5,
data_in6,
data_in7,
data_in8,
medfilt_data_out //output-to top;
);
input CLK;
input RSTn;
input win_data_sig;
input [7:0] data_in0; //output-to ;
input [7:0] data_in1;
input [7:0] data_in2;
input [7:0] data_in3;
input [7:0] data_in4;
input [7:0] data_in5;
input [7:0] data_in6;
input [7:0] data_in7;
input [7:0] data_in8;
output medfilt_done_sig;
output [7:0] medfilt_data_out;
/******************************************************************************/
reg [7:0] a11;
reg [7:0] a12;
reg [7:0] a13;
reg [7:0] a21;
reg [7:0] a22;
reg [7:0] a23;
reg [7:0] a31;
reg [7:0] a32;
reg [7:0] a33;
reg [7:0] b11;
reg [7:0] b12;
reg [7:0] b13;
reg [7:0] b21;
reg [7:0] b22;
reg [7:0] b23;
reg [7:0] b31;
reg [7:0] b32;
reg [7:0] b33;
reg [7:0] c11;
reg [7:0] c12;
reg [7:0] c13;
reg [7:0] c21;
reg [7:0] c22;
reg [7:0] c23;
reg [7:0] c31;
reg [7:0] c32;
reg [7:0] c33;
reg [2:0] i;
reg [7:0] medfilt_data;
reg filt_done;
reg cal_vld;
always @ ( posedge CLK or negedge RSTn )
if (!RSTn)
begin
a11 <= 0;
a12 <= 0;
a13 <= 0;
a21 <= 0;
a22 <= 0;
a23 <= 0;
a31 <= 0;
a32 <= 0;
a33 <= 0;
end
else if (win_data_sig)
begin
a11 <= data_in0;
a12 <= data_in1;
a13 <= data_in2;
a21 <= data_in3;
a22 <= data_in4;
a23 <= data_in5;
a31 <= data_in6;
a32 <= data_in7;
a33 <= data_in8;
end
always @ ( posedge CLK or negedge RSTn )
if (!RSTn)
i <= 3'd0;
else if( cal_vld & ( i!=3 ) )
i <= i + 1;
else
i <= 0;
always @ ( posedge CLK or negedge RSTn )
if (!RSTn)
cal_vld <= 1'b0;
else if( win_data_sig )
cal_vld <= 1'b1;
else if( i==3'd3 )
cal_vld <= 0;
always @ ( posedge CLK or negedge RSTn )
if (!RSTn)
begin
filt_done <= 1'b0;
b11 <= 0;
b12 <= 0;
b13 <= 0;
b21 <= 0;
b22 <= 0;
b23 <= 0;
b31 <= 0;
b32 <= 0;
b33 <= 0;
c11 <= 0;
c12 <= 0;
c13 <= 0;
c21 <= 0;
c22 <= 0;
c23 <= 0;
c31 <= 0;
c32 <= 0;
c33 <= 0;
medfilt_data <= 0;
end
else if( cal_vld )
case(i)
3'd0:
begin
b11 <= max(a11, a21, a31);
b12 <= max(a12, a22, a32);
b13 <= max(a13, a23, a33);
b21 <= med(a11, a21, a31);
b22 <= med(a12, a22, a32);
b23 <= med(a13, a23, a33);
b31 <= min(a11, a21, a31);
b32 <= min(a12, a22, a32);
b33 <= min(a13, a23, a33);
end
3'd1:
begin
c31 <= max(b31, b32, b33);
c22 <= med(b21, b22, b23);
c13 <= min(b11, b12, b13);
end
3'd2:
begin
medfilt_data <= med(c13, c22, c31);
filt_done<=1'b1;
end
3'd3:
filt_done <= 1'b0;
default:;
endcase
/************************************************************************************/
function [7:0] max;//if the data is signed number, please add the char signed behind key function;
input [7:0] a, b, c;
begin
max = (((a >= b) ? a : b) >= c ) ? ((a >= b) ? a : b) : c;
end
endfunction
function [7:0] med;
input [7:0] a, b, c;
begin
med = a < b ? (b < c ? b : a < c ? c : a) : (b > c ? b : a > c ? c : a);
end
endfunction
function [7:0] min;
input [7:0] a, b, c;
begin
min= (((a <= b) ? a : b) <= c ) ? ((a <= b) ? a : b) : c;
end
endfunction
/************************************************************************************/
assign medfilt_data_out = medfilt_data;
assign medfilt_done_sig = filt_done;
/**********************************************************************************/
endmodule
5)顶层模块,用于将低层的各个功能/控制模块衔接起来,得到结果;
注意输入输出信号,以及不同模块之间是如何进行连线的。
信号的名称尽量有其特别的意义,不要重复使用同一个信号名称,容易造成混乱;
区别wire和reg类型数据的使用情况;
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date:
// Design Name:
// Module Name: medfilter2
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module medfilter2
(
CLK,
RSTn,
Start_sig,
Done_sig,
Data_out
);
input CLK;
input RSTn;
input Start_sig;
output Done_sig;
output [7:0] Data_out;
/********************************************************************/
wire [17:0] rom_addr; //
wire [7:0] rom_data; //
rom_512by512 rom_512by512_inst
(
.clka(CLK), //input clka;
.addra(rom_addr), //input-from;
.douta(rom_data) //output-to ;
);
/******************************************************************************/
//wire [7:0] win_data[8:0];
wire [7:0] data_out0; //output-to ;
wire [7:0] data_out1;
wire [7:0] data_out2;
wire [7:0] data_out3;
wire [7:0] data_out4;
wire [7:0] data_out5;
wire [7:0] data_out6;
wire [7:0] data_out7;
wire [7:0] data_out8;
wire win_done_sig;
wire [9:0] column_addr_sig;
wire [9:0] row_addr_sig;
win3by3_gen win3by3_gen_inst (
.CLK(CLK),
.RSTn(RSTn),
.center_pix_sig(win_start_sig), //input-from ;
.cols(10'd512), // the column numbers of the input image
.rows(10'd512), // the row numbers of the input image
.rom_data_win(rom_data), //input-from ;
.column_addr_sig(column_addr_sig), //input-from ; //output [9 : 0] addra;
.row_addr_sig(row_addr_sig), //input-from ; //output [9 : 0] addra;
.rom_addr_sig(rom_addr), //output-to ;
.data_out0(data_out0), //output-to ;
.data_out1(data_out1),
.data_out2(data_out2),
.data_out3(data_out3),
.data_out4(data_out4),
.data_out5(data_out5),
.data_out6(data_out6),
.data_out7(data_out7),
.data_out8(data_out8),
.win_data_done_sig(win_done_sig) //output-to U4/U3;
);
/******************************************************************************/
counter_ctrl counter_ctrl_inst(
.CLK(CLK),
.RSTn(RSTn),
.start_sig(Start_sig), //input-from top
.nxt_pix_sig(win_done_sig), //input-from
.cols(10'd512),
.column_addr_sig(column_addr_sig), //output-to
.row_addr_sig(row_addr_sig), //output-to
.pix_done_sig(win_start_sig) //output-to
);
/*****************************************************************************/
wire medfilt_done_sig;
wire [7:0] medfilt_data_wire;
medfilter3by3 medfilter3by3_inst
(
.CLK(CLK),
.RSTn(RSTn),
.win_data_sig(win_done_sig), //input-from;
.medfilt_done_sig(medfilt_done_sig), //output-to;
.data_in0(data_out0), //input-from ;
.data_in1(data_out1),
.data_in2(data_out2),
.data_in3(data_out3),
.data_in4(data_out4),
.data_in5(data_out5),
.data_in6(data_out6),
.data_in7(data_out7),
.data_in8(data_out8),
.medfilt_data_out(medfilt_data_wire) //output-to top;
);
/*********************************************************************/
wire Done_sig;
wire [7:0] Data_out;
assign Done_sig = medfilt_done_sig;
assign Data_out = medfilt_data_wire;
/**********************************************************************/
endmodule
6)测试模块
如何将数据写入文件,需要定义文件的名称和类型;
integer fouti;
需要在初始化部分打开文件:
fouti = $fopen("medfilter2_re.txt");
代码如下:
`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date:
// Design Name: medfilter2
// Module Name: E:/stereo_match_pro/stereo_match_FPGA0518/medfilter_tb.v
// Project Name: stereo_match_FPGA0518
// Target Device:
// Tool versions:
// Description:
//
// Verilog Test Fixture created by ISE for module: medfilter2
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
////////////////////////////////////////////////////////////////////////////////
module medfilter_tb;
// Inputs
reg CLK;
reg RSTn;
reg Start_sig;
reg [18:0] pix_cnt; //512*512=262144=100,0000,0000,0000,0000
// Outputs
wire Done_sig;
wire [7:0] Data_out;
integer fouti;
// Instantiate the Unit Under Test (UUT)
medfilter2 uut (
.CLK(CLK),
.RSTn(RSTn),
.Start_sig(Start_sig),
.Done_sig(Done_sig),
.Data_out(Data_out)
);
//assign Data_out = 0;
//assign Done_sig = 0;
initial begin
// Initialize Inputs
CLK = 0;
RSTn = 1;
Start_sig = 0;
fouti = $fopen("medfilter2_re.txt");
// Wait 100 ns for global reset to finish
#100; // To reset the system
// Add stimulus here
RSTn = 0;
Start_sig = 1;
pix_cnt = 0;
#100; // To start the system
// Add stimulus here
RSTn = 1;
pix_cnt = 1;
end
always #10 CLK = ~CLK;
always@(posedge CLK)
begin
if(Done_sig)
pix_cnt <= pix_cnt + 1;
end
always@(posedge CLK)
begin
if(pix_cnt == 19'd262145)
begin
Start_sig <= 0;
$display("Image Medfilter Completed!\n");
$display(</span><span style="color: #800000;">"</span><span style="color: #800000;">The all time is %d \n</span><span style="color: #800000;">"</span>,$time);
$stop;
end
end
always@(posedge CLK)
begin
if(Done_sig)
begin
$fwrite(fouti, "%d", Data_out, "\n");
$display("%d",pix_cnt);
end
end
endmodule
整体的代码就是这样的。
3.对各个模块进行语法检查、波形仿真、时序设计、调试验证;
本人觉得原理清楚之后按部就班的编写代码还好,只是刚接触波形仿真和调试的时候是真心不顺心,还好有同事帮忙调试;在调试的过程中其实会学习到很多东西,很多经验,以及很简单的但你之前就是不知道的知识,这就是一个实践的过程,有时候你根本不知道错误在哪里,这怎么会是错误的呢,为什么不可以这样写,我觉得这样写才是正确的,这些就是在调试过程中本人的真实心情写照呀。可是,没有那么多为什么,verilog就是这样编程的,只是你不知道而已!这才是最伤人的,因为你不知道!
仿真调试的过程中遇到的问题以及解决方法有空专门写一篇,调试的过程中最好是一个一个模块的测试,特别是关键信号的数值,最好搞懂整体模块和各个模块的时序设计过程,推荐使用TimeDesigner进行波形的设计;另外还需要有关联的两个甚至多个不同模块信号的交叉仿真验证。
4.与matlab的中值滤波结果进行比较
使用matlab编程基于自带的中值滤波函数得到处理之后的图像与数据,并将verilog得到的滤波数据转换为图像,将二者进行比较。
使用matlab自带的中值滤波函数medfilt2生成原图像的灰度图像的滤波数据;
% mcode to median filter for one jpg image, and create a image data file
src = imread('lena.jpg');
gray = rgb2gray(src);
medfilt2im = medfilt2( gray );
[m, n] = size( medfilt2im ); % m行 n列
N = m*n; %%数据的长度,即存储器深度。
word_len = 8; %%每个单元的占据的位数,需自己设定
lena_gray = reshape(gray', 1, N);% 1行N列
lena_medfilt = reshape(medfilt2im', 1, N);% 1行N列
fid_gray=fopen('lena_gray.txt', 'wt'); %打开文件
fid_medfilt=fopen('lena_medfilt.txt', 'wt'); %打开文件
% fprintf(fid, 'MEMORY_INITIALIZATION_RADIX=16;\n');
% fprintf(fid, 'MEMORY_INITIALIZATION_VECTOR=\n');
for i = 1 : N-1
fprintf(fid_gray, '%d,\n', lena_gray(i));%使用%x表示十六进制数
end
fprintf(fid_gray, '%d;\n', data(N)); %%输出结尾,每个数据后面用逗号或者空格或者换行符隔开,最后一个数据后面加分号
fclose(fid_gray); %%关闭文件
for i = 1 : N-1
fprintf(fid_medfilt, '%d,\n', lena_medfilt(i));%使用%x表示十六进制数
end
fprintf(fid_medfilt, '%d;\n', lena_medfilt(N)); %%输出结尾,每个数据后面用逗号或者空格或者换行符隔开,最后一个数据后面加分号
fclose(fid_medfilt); %%关闭文件
将medfilt2函数和verilog产生的滤波数据转换为图像,并与matlab直接产生的滤波图像进行对比,代码如下:
% code to create image data from txt file
clc;
clear all;
close all;
I_rgb = imread('lena.jpg');
subplot(2, 3, 1), imshow(I_rgb), title('lena-rgb')
I_gray = rgb2gray(I_rgb);
subplot(2, 3, 2), imshow(I_gray), title('lena-gray')
medfilt_m_load = load('.\lena_medfilt.txt');
%medfilt_m_load = load('.\lena.coe');
medfilt_v_load = load('.\medfilter2_reV1.txt'); % verilog 产生的中值滤波之后数据
medfilt2im = medfilt2( I_gray );
subplot(2, 3, 3), imshow(medfilt2im), title('lena-medfilt2')
m = 512;
n = 512;
medfilt_m = reshape(medfilt_m_load, m, n);
medfilt_v = reshape(medfilt_v_load, m, n);
medfilt_m = uint8(medfilt_m');
medfilt_v = uint8(medfilt_v');
aa = medfilt2im - medfilt_m;
bb = medfilt2im - medfilt_v;
cc = medfilt_m - medfilt_v;
subplot(2, 3, 5), imshow(medfilt_m), title('medfilt-matlab');
subplot(2, 3, 6), imshow(medfilt_v), title('medfilt-verilog');
显示的结果如下图所示:
结果:两种滤波产生的图像数据完全一致,不过感觉函数直接产生的图像颜色更深一些,不知道为什么。
这里需要了解一下medfilt2这个函数的原理。结果数据表明,默认情况下该函数对图像边界采用的是补0的方法进行处理的。
结论
中值滤波终于告一段落了!简单的问题还是需要深入进去研究的,实践的过程中你才会发现自己之前了解的东西是多么的浅薄,对已知的知识掌握的是多么的流于表面!
最后结果的数据还是很让人开心的! |