集成电路技术分享

 找回密码
 我要注册

QQ登录

只需一步,快速开始

搜索
查看: 1291|回复: 2

MATLAB入门教程

[复制链接]
zxopenluyutong 发表于 2021-3-14 14:49:20 | 显示全部楼层 |阅读模式
1.MATLAB的基本知识

1-1、基本运算与函数   

在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如:  

>> (5*2+1.3-0.8)*10/25   

ans =4.2000   

MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。

小提示: ">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。  

我们也可将上述运算式的结果设定给另一个变数x:   

x = (5*2+1.3-0.8)*10^2/25   

x = 42  

此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。  

小提示: MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variabledeclaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。   

若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:

y = sin(10)*exp(-0.3*4^2);   

若要显示变数y的值,直接键入y即可:   

>>y   

y =-0.0045   

在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。

下表即为MATLAB常用的基本数学函数及三角函数:   

小整理:MATLAB常用的基本数学函数

abs(x):纯量的绝对值或向量的长度

angle(z):复 数z的相角(Phase angle)

sqrt(x):开平方

real(z):复数z的实部

imag(z):复数z的虚 部

conj(z):复数z的共轭复数

round(x):四舍五入至最近整数

fix(x):无论正负,舍去小数至最近整数

floor(x):地板函数,即舍去正小数至最近整数

ceil(x):天花板函数,即加入正小数至最近整数

rat(x):将实数x化为分数表示

rats(x):将实数x化为多项分数展开

sign(x):符号函数 (Signum function)。   

当x<0时,sign(x)=-1;   

当x=0时,sign(x)=0;   

当x>0时,sign(x)=1。   

> 小整理:MATLAB常用的三角函数

sin(x):正弦函数

cos(x):馀弦函数

tan(x):正切函数

asin(x):反正弦函数

acos(x):反馀弦函数

atan(x):反正切函数

atan2(x,y):四象限的反正切函数

sinh(x):超越正弦函数

cosh(x):超越馀弦函数

tanh(x):超越正切函数

asinh(x):反超越正弦函数

acosh(x):反超越馀弦函数

atanh(x):反超越正切函数   

变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算:

x = [1 3 5 2];   

y = 2*x+1   

y = 3 7 11 5   

小提示:变数命名的规则   

1.第一个字母必须是英文字母 2.字母间不可留空格 3.最多只能有19个字母,MATLAB会忽略多馀字母   

我们可以随意更改、增加或删除向量的元素:  

y(3) = 2 % 更改第三个元素   

y =3 7 2 5   

y(6) = 10 % 加入第六个元素   

y = 3 7 2 5 0 10   

y(4) = [] % 删除第四个元素,   

y = 3 7 2 0 10   

在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算:

x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算   

ans = 9   

y(2:4)-1 % 取出y的第二至第四个元素来做运算   

ans = 6 1 -1   

在上例中,2:4代表一个由2、3、4组成的向量



若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):helplinspace   

小整理:MATLAB的查询命令

help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!) lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後 ,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。)  

将行向量转置(Transpose)後,即可得到列向量(Column vector):   

z = x'   

z = 4.0000   

   5.2000   

   6.4000   

   7.6000   

   8.8000   

   10.0000   

不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:  

length(z) % z的元素个数   

ans = 6   

max(z) % z的最大值   

ans = 10   

min(z) % z的最小值   

ans =   4   

小整理:适用於向量的常用函数有:

min(x): 向量x的元素的最小值

max(x): 向量x的元素的最大值

mean(x): 向量x的元素的平均值

median(x): 向量x的元素的中位数

std(x): 向量x的元素的标准差

diff(x): 向量x的相邻元素的差

sort(x): 对向量x的元素进行排序(Sorting)

length(x): 向量x的元素个数

norm(x): 向量x的欧氏(Euclidean)长度

sum(x): 向量x的元素总和

prod(x): 向量x的元素总乘积

cumsum(x): 向量x的累计元素总和

cumprod(x): 向量x的累计元素总乘积

dot(x, y): 向量x和y的内 积

cross(x, y): 向量x和y的外积 (大部份的向量函数也可适用於矩阵,详见下述。)  





若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:   

A = [1 2 3 4; 5 6 7 8; 9 1011 12];   

A =   

1  2  3 4   

5  6  7 8   

9  10 11  12   

同样地,我们可以对矩阵进行各种处理:   

A(2,3) = 5 % 改变位於第二列,第三行的元素值   

A =   

1  2  3 4   

5  6  5 8   

9  10 11  12   

B = A(2,1:3) % 取出部份矩阵B   

B = 5 6 5   

A = [A B'] % 将B转置後以列向量并入A   

A =   

1  2  3  4  5   

5  6  5  8  6   

9  10 11  12 5   

A(:, 2) = [] % 删除第二行(:代表所有列)   

A =   

1  3  4 5   

5  5  8 6   

9  11 12  5   

A = [A; 4 3 2 1] % 加入第四列   

A =   

1  3   4  5   

5  5   8  6   

9  11  12 5   

4  3   2  1   

A([1 4], = [] % 删除第一和第四列(:代表所有行)   

A =   

5  5   8  6   

9  11  12 5   

这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。   

小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。  

此外,若要重新安排矩阵的形状,可用reshape命令:   

B = reshape(A, 4, 2) % 4是新矩阵的行数,2是新矩阵的列数   

B =   

5   8   

9   12   

5   6   

11  5   

小提示: A(就是将矩阵A每一行堆叠起来,成为一个列向量,而这也是MATLAB变数的内部储存方式。以前例而言,reshape(A, 8, 1)和A(同样都会产生一个8x1的矩阵。

MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:   

x = sin(pi/3); y = x^2; z = y*10,

z =   

7.5000   

若一个数学运算是太长,可用三个句点将其延伸到下一行:  

z = 10*sin(pi/3)* ...   

sin(pi/3);   

若要检视现存於工作空间(Workspace)的变数,可键入who:   

who   

Your variables are:   

testfile x   

这些是由使用者定义的变数。若要知道这些变数的详细资料,可键入:   

whos   

Name Size Bytes Class  

A 2x4 64 double array   

B 4x2 64 double array   

ans 1x1 8 double array   

x 1x1 8 double array   

y 1x1 8 double array   

z 1x1 8 double array   

Grand total is 20 elements using 160 bytes   

使用clear可以删除工作空间的变数:   

clear A   

A   

??? Undefined function or variable 'A'.   

另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不 到,但使用者可直接取用,例如:   

pi   

ans = 3.1416   

下表即为MATLAB常用到的永久常数。   

小整理:MATLAB的永久常数 i或j:基本虚数单位

eps:系统的浮点(Floating-point)精确度

inf:无限大, 例如1/0 nan或NaN:非数值(Not a number) ,例如0/0

pi:圆周率 p(= 3.1415926...)

realmax:系统所能表示的最大数值  

realmin:系统所能表示的最小数值

nargin: 函数的输入引数个数

nargin: 函数的输出引数个数   

1-2、重复命令   

最简单的重复命令是for圈(for-loop),其基本形式为:     

for 变数 = 矩阵;   

运算式;   

end   

其中变数的值会被依次设定为矩阵的每一行,来执行介於for和end之间的运算式。因此,若无意外情况,运算式执行的次数会等於矩阵的行数。   

举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence):  

x = zeros(1,6); % x是一个16的零矩阵   

for i = 1:6,   

x(i) = 1/i;   

end   

在上例中,矩阵x最初是一个16的零矩阵,在for圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。我们可用分数来显示此数列:   

format rat % 使用分数来表示数值   

disp(x)   

1 1/2 1/3 1/4 1/5 1/6   

for圈可以是多层的,下例产生一个16的Hilbert矩阵h,其中为於第i列、第j行的元素为   

h = zeros(6);   

for i = 1:6,   

for j = 1:6,   

h(i,j) = 1/(i+j-1);   

end   

end   

disp(h)   

1 1/2 1/3 1/4 1/5 1/6   

1/2 1/3 1/4 1/5 1/6 1/7   

1/3 1/4 1/5 1/6 1/7 1/8   

1/4 1/5 1/6 1/7 1/8 1/9   

1/5 1/6 1/7 1/8 1/9 1/10   

1/6 1/7 1/8 1/9 1/10 1/11   

小提示:预先配置矩阵 在上面的例子,我们使用zeros来预先配置(Allocate)了一个适当大小的矩阵。若不预先配置矩阵,程式仍可执行,但此时MATLAB需要动态地增加(或减小)矩阵的大小,因而降低程式的执行效率。所以在使用一个矩阵时,若能在事前知道其大小,则最好先使用zeros或ones等命令来预先配置所需的记忆体(即矩阵)大小。  



在下例中,for圈列出先前产生的Hilbert矩阵的每一行的平方和:   

for i = h,   

disp(norm(i)^2); % 印出每一行的平方和   

end   



1299/871   

282/551   

650/2343   

524/2933   

559/4431   

831/8801   

在上例中,每一次i的值就是矩阵h的一行,所以写出来的命令特别简洁。   

令一个常用到的重复命令是while圈,其基本形式为:   

while 条件式;   

运算式;   

end  

也就是说,只要条件示成立,运算式就会一再被执行。例如先前产生调和数列的例子,我们可用while圈改写如下:   

x = zeros(1,6); % x是一个16的零矩阵   

i = 1;   

while i <= 6,   

x(i) = 1/i;   

i = i+1;   

end   

format short
hellokity 发表于 2021-3-15 09:12:48 | 显示全部楼层
MATLAB入门教程
 楼主| zxopenluyutong 发表于 2021-3-15 14:26:43 | 显示全部楼层
MATLAB入门教程
您需要登录后才可以回帖 登录 | 我要注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

QQ|小黑屋|手机版|Archiver|fpga论坛|fpga设计论坛 ( 京ICP备20003123号-1 )

GMT+8, 2024-11-29 05:30 , Processed in 0.057851 second(s), 20 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表