负责AWS容器和HPC部门的主管Deepak Singh向“The Next Platform”介绍到那些发展最快的应用领域有很多相似之处,例如都期望采用基于云计算的FPGA解决方案,详情可参照最近新出版的一本书“FPGA前沿:可重构计算方面的新应用”。这些涉及到加密和安全、基因组学、金融服务以及一系列机器学习相关应用。“对于安全、基因组学和金融服务等都已经有很多FPGA的使用案例了,我们期待看到FPGA与机器学习的结合,那将是一个更广泛的领域,我们需要提供更多的工具和支持来满足它的增长。”
Singh将精力集中在专门的工作负载研究方面,包括高性能计算,在AWS部门十多年来也参与并见证技术的变迁,从通用的云服务(类似于生活基本的面包和黄油)到新计算和内存密集型应用以及高性能计算(HPC)GPU加速方案等其他方面。除了关注这类应用的硬件和软件要求,Signh说到他也在关注另外具有更广泛发展和影响的两个方面,分别是机器学习和相关的硬件需求。
机器学习是FPGA的重要发展领域,Signh说到,但是从规模上看它只趋向于特定专业用户,现在还不确定可重配置器件可能适合作为哪些器件,“它可能作为GPU、CPU,或者作为定制化的ASIC、张量处理器或者只是作为FPGA来使用,也可能是某几类的结合”,最后他说到因为最近几年GPU、可编程环境以及形成的生态系统,用户可以更加开放的去探索新的架构和加速器,虽然还是差不多同样的应用场景,但是至少会有一些兴趣强烈的用户(不单单是为实现通用功能)和他的团队都会经常关注新的架构,最后会选择AWS的解决方案。Signh还说到,现在AWS FPGA云服务方案前期会吸引一部分用户,同时也会鼓励合作伙伴参与到FPGA技术开发过程中来。
通用计算不会就此消失,目前它仍是驱动计算的主要力量。但是最近两年或者三年出现的Nvidia Tesla GPU以及它的性能让专业编程器件更加容易,人们对专业处理器的兴趣、开发人员,工作负载和公司的规模和活跃度都正在形成。从一定程度上讲,专门的硬件和基础设施起到了非常大的作用,尤其对于那些有专门需求的用户,我们认为FPGA是最好的一个选择。
Singh提到很多终端用户已经开始转移,如果不是所用通用工作负载都在云端完成,本地数据中心可能已经是过去时了。几乎没有哪个电气设备能够形成一个单一的、专门的工作负载。“除了基于FPGA的设备可能没有什么可以剩下来,因为其他相关的也已经出局了。”对于这样的情形,他说到现在硬件和设备供应商之间的关系最终都会转移到亚马逊云服务上来,具备FPGA核心机器的供应商不是很多,然而正如过去我们描述的那样,Edico Genome(FPGA加速的基因组平台)和Ryft(FPGA驱动大规模数据分析平台)在亚马逊的努力下成为很好的搭档,使用F1服务器实例满足新型专业需求。