集成电路技术分享

 找回密码
 我要注册

QQ登录

只需一步,快速开始

搜索
查看: 8348|回复: 19

DCM模块的使用

[复制链接]
小舍YZ 发表于 2017-7-3 12:59:50 | 显示全部楼层 |阅读模式
DCM模块的使用

1.DCM模块的组成和功能介绍
数字时钟管理模块(Digital Clock Manager,DCM)是基于Xilinx的其他系列器件所采用的数字延迟锁相环(DLL,Delay Locked Loop)模块。在时钟的管理与控制方面,DCM与DLL相比,功能更强大,使用更灵活。DCM的功能包括消除时钟的延时、频率的合成、时钟相位的调整等系统方面的需求。DCM的主要优点在于:①实现零时钟偏移(Skew),消除时钟分配延迟,并实现时钟闭环控制;②时钟可以映射到PCB上用于同步外部芯片,这样就减少了对外部芯片的要求,将芯片内外的时钟控制一体化,以利于系统设计。对于DCM模块来说,其关键参数为输入时钟频率范围、输出时钟频率范围、输入/输出时钟允许抖动范围等。

DCM共由四部分组成,如图4-109所示。其中最底层仍采用成熟的DLL模块;其次分别为数字频率合成器(DFS,Digital Frequency Synthesizer)、数字移相器(DPS,Digital Phase Shifter)和数字频谱扩展器(DSS,Digital Spread Spectrum)。不同的芯片模块的DCM输入频率范围是不同的,例如:

图4-109 DCM功能块和相应的信号

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
 楼主| 小舍YZ 发表于 2017-7-3 13:01:35 | 显示全部楼层
1)DLL模块

DLL主要由一个延时线和控制逻辑组成。延时线对时钟输入端CLKIN产生一个延时,时钟分布网线将该时钟分配到器件内的各个寄存器和时钟反馈端CLKFB;控制逻辑在反馈时钟到达时采样输入时钟以调整二者之间的偏差,实现输入和输出的零延时,如图4-110所示。具体工作原理是:控制逻辑在比较输入时钟和反馈时钟的偏差后,调整延时线参数,在输入时钟后不停地插入延时,直到输入时钟和反馈时钟的上升沿同步,锁定环路进入“锁定”状态,只要输入时钟不发生变化,输入时钟和反馈时钟就保持同步。DLL可以被用来实现一些电路以完善和简化系统级设计,如提供零传播延迟,低时钟相位差和高级时钟区域控制等。

图4-110 DLL简单模型示意图

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
 楼主| 小舍YZ 发表于 2017-7-3 13:02:54 | 显示全部楼层
在Xilinx芯片中,典型的DLL标准原型如图4-111所示,其管脚分别说明如下:

CLKIN(源时钟输入):DLL输入时钟信号,通常来自IBUFG或BUFG。
CLKFB(反馈时钟输入):DLL时钟反馈信号,该反馈信号必须源自CL K0或CL K2X,并通过IBUFG或BUFG相连。
RST(复位):控制DLL的初始化,通常接地。
CLK0(同频信号输出):与CL KIN无相位偏移;CL K90与CL KIN 有90度相位偏移;CL K180与CL KIN 有180度相位偏移;CL K270与CL KIN有270度相位偏移。
CLKDV(分频输出):DLL输出时钟信号,是CLKIN的分频时钟信号。DLL支持的分频系数为1.5,2,2.5,3,4,5,8 和16。
CLK2X(两倍信号输出):CLKIN的2倍频时钟信号。
LOCKED(输出锁存):为了完成锁存,DLL可能要检测上千个时钟周期。当DLL完成锁存之后,LOCKED有效。

图4-111 Xilinx DLL的典型模型示意图

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
 楼主| 小舍YZ 发表于 2017-7-3 13:03:44 | 显示全部楼层
在FPGA 设计中,消除时钟的传输延迟,实现高扇出最简单的方法就是用DLL,把CLK0 与CLKFB相连即可。利用一个DLL可以实现2倍频输出,如图4-112所示。利用两个DLL 就可以实现4倍频输出,如图4-113所示。

图4-112 Xilinx DLL 2倍频典型模型示意图

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
 楼主| 小舍YZ 发表于 2017-7-3 13:04:27 | 显示全部楼层
图4-113 Xilinx DLL 4倍频典型模型示意图

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
 楼主| 小舍YZ 发表于 2017-7-3 13:06:22 | 显示全部楼层
2)数字频率合成器

DFS可以为系统产生丰富的频率合成时钟信号,输出信号为CLKFB和CLKFX180,可提供输入时钟频率分数倍或整数倍的时钟输出频率方案,输出频率范围为1.5~320 MHz(不同芯片的输出频率范围是不同的)。这些频率基于用户自定义的两个整数比值,一个是乘因子(CLKFX_ MULTIPLY),另外一个是除因子(CLKFX_ DIVIDE),输入频率和输出频率之间的关系为:

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
 楼主| 小舍YZ 发表于 2017-7-3 13:06:44 | 显示全部楼层
比如取CLKFX_MULTIPLY = 3,CLKFX_DIVIDE = 1,PCB上源时钟为100 MHz,通过DCM 3倍频后,就能驱动时钟频率在300 MHz的FPGA,从而减少了板上的时钟路径,简化板子的设计,提供更好的信号完整性。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
 楼主| 小舍YZ 发表于 2017-7-3 13:07:52 | 显示全部楼层
3) 数字移相器

DCM具有移动时钟信号相位的能力,因此能够调整I/O信号的建立和保持时间,能支持对其输出时钟进行0度、90度、180度、270度的相移粗调和相移细调。其中,相移细调对相位的控制可以达到1%输入时钟周期的精度(或者50 ps),并且具有补偿电压和温度漂移的动态相位调节能力。对DCM输出时钟的相位调整需要通过属性控制PHASE_SHIFT来设置。PS设置范围为-255到+255,比如输入时钟为200 MHz,需要将输出时钟调整+ 0.9 ns的话,PS =(0.9ns/ 5ns)×256 = 46。如果PHASE_ SHIFT值是一个负数,则表示时钟输出应该相对于CLKIN向后进行相位移动;如果PHASE_SHIFT是一个正值,则表示时钟输出应该相对于CLKIN向前进行相位移动。

移相用法的原理图与倍频用法的原理图很类似,只用把CLK2X输出端的输出缓存移到CLK90、CLK180或者CLK270端即可。利用原时钟和移相时钟与计数器相配合也可以产生相应的倍频。

4) 数字频谱合成器

Xilinx公司第一个提出利用创新的扩频时钟技术来减少电磁干扰(EMI)噪声辐射的可编程解决方案。最先在FPGA中实现电磁兼容的EMIControl技术,是利用数字扩频技术(DSS)通过扩展输出时钟频率的频谱来降低电磁干扰,减少用户在电磁屏蔽上的投资。数字扩频(DSS)技术通过展宽输出时钟的频谱,来减少EMI和达到FCC要求。这一特点使设计者可极大地降低系统成本,使电路板重新设计的可能性降到最小,并不再需要昂贵的屏蔽,从而缩短了设计周期。
2.DCM模块IP Core的使用

例4-7 在ISE中调用DCM模块,完成50MHz时钟信号到75MHz时钟信号的转换。

1)在源文件进程中,双击“Create New Source”;然后在源文件窗口,选择“IP (CoreGen & Architecture ClockingWizard)”,输入文件名“my_dcm”;再点击“Next”,在选择类型窗口中,“FPGA Features and Design  Virtex-4”,然后选择“Single DCM ADV v9.1i”,如图4-114所示。

图4-114 新建DCM模块IP Core向导示意图

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
 楼主| 小舍YZ 发表于 2017-7-3 13:09:35 | 显示全部楼层
        <2> 点击“Next”,“Finish”进入Xilinx 时钟向导的建立窗口,如图4-115所示。ISE默认选中CLK0和 LOCKED这两个信号,用户根据自己需求添加输出时钟。在“Input Clock Frequency”输入栏中敲入输入时钟的频率或周期,单位分别是MHz和ns,其余配置保留默认值。为了演示,这里添加了CLKFX 信号,并设定输入时钟为单端信号,频率为50MHz,其余选项保持默认值。
图4-115 DCM模块配置向导界面

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
 楼主| 小舍YZ 发表于 2017-7-3 13:10:18 | 显示全部楼层
       <3> 点击“Next”,进入时钟缓存窗口,如图4-116所示。默认配置为DCM输出添加全局时钟缓存以保证良好的时钟特性。如果设计全局时钟资源,用户亦可选择“Customize buffers”自行编辑输出缓存。一般选择默认配置即可。
图4-116 DCM模块时钟缓存配置向导界面

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?我要注册

x
您需要登录后才可以回帖 登录 | 我要注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

QQ|小黑屋|手机版|Archiver|fpga论坛|fpga设计论坛 ( 京ICP备20003123号-1 )

GMT+8, 2024-11-28 18:53 , Processed in 0.065546 second(s), 20 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表